Layers and spikes in non-homogeneous bistable reaction-diffusion equations
نویسندگان
چکیده
منابع مشابه
Layers and Spikes in Non-homogeneous Bistable Reaction-diffusion Equations
We study ε2ü = f(u, x) = Au (1−u) (φ−u), where A = A(u, x) > 0, φ = φ(x) ∈ (0, 1), and ε > 0 is sufficiently small, on an interval [0, L] with boundary conditions u̇ = 0 at x = 0, L. All solutions with an ε independent number of oscillations are analyzed. Existence of complicated patterns of layers and spikes is proved, and their Morse index is determined. It is observed that the results extend ...
متن کاملTransition fronts for periodic bistable reaction-diffusion equations
This paper is concerned with the existence and qualitative properties of transition fronts for spatially periodic reaction-diffusion equations with bistable nonlinearities. The notion of transition fronts connecting two stable steady states generalizes the standard notion of pulsating fronts. In this paper, we prove that the time-global solutions in the class of transition fronts share some com...
متن کاملBistable travelling waves for nonlocal reaction diffusion equations
We are concerned with travelling wave solutions arising in a reaction diffusion equation with bistable and nonlocal nonlinearity, for which the comparison principle does not hold. Stability of the equilibrium u ≡ 1 is not assumed. We construct a travelling wave solution connecting 0 to an unknown steady state, which is “above and away” from the intermediate equilibrium. For focusing kernels we ...
متن کاملEntire Solutions of Reaction-diffusion Equations with Balanced Bistable Nonlinearities
This paper deals with entire solutions of a bistable reaction-diffusion equation for which the speed of the traveling wave connecting two constant stable equilibria is zero. Entire solutions which behave as two traveling fronts approaching, with super-slow speeds, from opposite directions and annihilating in a finite time are constructed by using a quasiinvariant manifold approach. Such solutio...
متن کاملThreshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations
Abstract. We consider bounded solutions of the semilinear heat equation ut = uxx + f(u) on R, where f is of the unbalanced bistable type. We examine the ω-limit sets of bounded solutions with respect to the locally uniform convergence. Our goal is to show that even for solutions whose initial data vanish at x = ±∞, the ω-limit sets may contain functions which are not steady states. Previously, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2006
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-06-03834-7